Biography
Dr. Mirza Muhammad Faran Ashraf Baig
Dr. Mirza Muhammad Faran Ashraf Baig
The University of Hong Kong, China
Title: Treatment of Wilms’ nephroblastoma cancer cells via EGFR targeting of dactinomycin loaded DNA-nanowires
Abstract: 
Purpose
Dactinomycin (DCTM) is a highly cytotoxic hydrophobic drug requiring robust nanomaterials for uniformed water dispersion and safe delivery to tumor site avoiding exposure to healthy cells.
Methods
DNA triangulation produces sturdier two-dimensional nanostructures through the polymerization of DNA-triangles by sticky ends cohesion in the form of DNA-nanosheets. The curvature of the B-form (right twisted) DNA causes the coiling of the DNA-nanosheets into DNA-nanowires (D-NWs) structures. DNA-triangles scaffolded by the short circular templates (84-NT) are stiffer in topology giving rise to compact D-NWs for DCTM loading, and cellular delivery. The PAGE gel analysis was performed to assess the polymerization of the DNA-triangles to observe restricted electrophoretic mobility, and attainment of a single sharp band. The morphology and compactness of the D-NWs were confirmed by the AFM analysis and confocal imaging. Epidermal growth factor (EGF) functionalization of the D-NWs was performed through amide chemistry using amino-modified DNA strands reacting with the carboxylic group of EGF for EGFR targeting. EGFR is highly expressed on NB-OK-1 Wilms’ tumor nephroblastoma cancer cells. DCTM loading onto D-NWs was carried out through intercalation between the base pairs of GC rich DNA duplex by physical mixing/incubation, and was confirmed through the UV peak shift analysis and confocal imaging. Cell internalizations and the cytotoxic effects were monitored via confocal imaging, MTT assay, and flow cytometry.
Results
AFM images of the synthesized D-NWs showed that polymerization of DNA-triangles was successful with the length ranging from 4 to 6 µm, and width ranging from 80 to 120 nm. EGF functionalization was confirmed through the confocal microscopy after labeling EGF with the FITC hook conjugating dye. The slight UV shift (> 15 nm) confirmed DCTM loading onto D-NWs. Blank D-NWs showed biocompatibility to the cells at different (low to high) concentrations (10 µM to 640 µM). MTT assay revealed that DCTM loaded D-NWs showed a dose-dependent (0.25–128 nM) decrease in cell viability.
Conclusion
EGF functionalized D-NWs effectively targeted the EGFR rich NB-OK-1 cancer cells compared to the control HEK293/D75 cells lacking EGFR (receptors). By these results, we can expect similar site-specific targeted treatment if administered systemically.
Keywords:
Dactinomycin (DCTM); DNA triangular tiles; DNA-nanosheets; DNA-nanowires (D-NWs)
Biography: 
Baig, MMFA is a registered Pharmacist and did a PhD in Chemistry. His recent research interest is designing nanomaterials for Biomedical Engineering, Mechano Pharmacology, Developmental Biology, Structural Biology,and Neuroscience. He got his post-doctoral training in Nanomedicine at the Faculty of Dentistry, The University of Hong Kong. His postdoctoral work was focused on designing DNA-based functional & bio-active nanomaterials to apply in Restorative Dentistry, Oral Microbiology/ Oncology,Regenerative Therapeutics, Stem Cells Research, Drug Delivery, and Molecular Pharmaceutics. He got a Ph.D. degree in Chemistry (Therapeutical Biochemistry) from the School of Chemistry and Chemical Engineering, Nanjing University (NJU), China. During his Ph.D., he worked on DNA Nanotechnology, Nano-Therapeutics, Biosensing, Bio-imaging, Diagnostics, and Cellular Biophysics. Previously, He received his Doctor of Pharmacy (PharmD) and MPhil (Pharmaceutical Chemistry) degrees from the Faculty of Pharmacy, Bahauddin Zakariya University (BZU), Multan, Pakistan; where he learned about Biochemistry, Phytochemistry, Pharmacognosy, Biotechnology, Polymers, Organic, Medicinal, Bio-analytical, and Material Chemistry. 
His research work mainly focused on the construction and function of DNA nanomachines, which are cutting edge and challenging topics. He designed and constructed unique DNA molecular tension probes using a short circular DNA nanotechnology technique and functionalized these probes with fluorophores, gold nanoparticles, small molecular drugs, and peptide ligands. He achieved nano-specific precision in organizing plasmonic nanoparticles on the nano DNA frameworks to achieve plasmon resonance effects. My work on the DNA nanomachines provided an efficient mechanism of fluorescence resonance energy transfer that realizes the bio-imaging, and detection of biological events, and functions of the biomolecules.